Word Problem Types with Bar Models
Table 1 Common addition and subtraction situations ${ }^{1}$

	Result Unknown		Change Unknown		Start Unknown		
Add to	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now?$\begin{equation*} 2+3=? \tag{K} \end{equation*}$		Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? $2+?=5$ $\left(1^{\text {st }}\right)$		Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? $?+3=5$ One-Step Problem (2 $\left.{ }^{\text {nd }}\right)$		
	X bunnies		5 bunnies		5 bunnies		
	2 bunnies	3 bunnies	2 bunnies	X bunnies	X bunnies	3 bunnies	
Take from	Five apples were on the table. I ate two apples. How many apples are on the table now?$\begin{equation*} 5-2=? \tag{K} \end{equation*}$		Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat?$5-?=3$		Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? ? $-2=3$ One-Step Problem		
	5 apples		5 apples		X apples		
	2 apples	X apples	X apples	3 apples	2 apples	3 apples	

Put Together/ Take Apart ${ }^{3}$	Total Unknown		Addend Unknown		Both Addends Unknown ${ }^{2}$	
	Three red apples and two green apples are on the table. How many apples are on the table? $\begin{equation*} 3+2=? \tag{К} \end{equation*}$		Five apples are on the table. Three are red and the rest are green. How many apples are green?$\begin{equation*} 3+?=5,5-3=? \tag{st} \end{equation*}$		Grandma has five flowers. How many can she put in her red vase and how many in her blue vase?$\begin{align*} & 5=0+5,5=5+0 \\ & 5=1+4,5=4+1 \\ & 5=2+3,5=3+2 \tag{K} \end{align*}$	
	2 apples	3 apples	3 apples	X apples	X flowers	Y flowers
					X flowers	Y flowers
					X flowers	Y flowers
					X flowers	Y flowers
					X flowers	Y flowers
					X flowers	Y flowers

K: Problem types to be mastered by the end of the Kindergarten year.
1st: Problem types to be mastered by the end of the First Grade year, including problem types from the previous year(s). However, First Grade students should have experiences with all 12 problem types.
2nd: Problem types to be mastered by the end of the Second Grade year, including problem types from the previous year(s).
1Adapted from Box 2-4 of Mathematics Learning in Early Childhood, National Research Council (2009, pp. 32, 33).

2These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the sign, help children understand that the = sign does not always mean makes or results in but always does mean is the same number as.

3Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10.

4For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the bigger unknown and using less for the smaller unknown). The other versions are more difficult.

